Coding & Cryptography
Coding \& Cryptography
Paper 1, Section I, G
Part II, 2017 commentLet be a binary code of length . Define the following decoding rules: (i) ideal observer, (ii) maximum likelihood, (iii) minimum distance.
Let denote the probability that a digit is mistransmitted and suppose . Prove that maximum likelihood and minimum distance decoding agree.
Suppose codewords 000 and 111 are sent with probabilities and respectively with error probability . If we receive 110 , how should it be decoded according to the three decoding rules above?
Paper 2, Section , G
Part II, 2017 commentProve that a decipherable code with prescribed word lengths exists if and only if there is a prefix-free code with the same word lengths.
Paper 3, Section I, G
Part II, 2017 commentFind and describe all binary cyclic codes of length 7 . Pair each code with its dual code. Justify your answer.
Paper 4, Section I, G
Part II, 2017 commentDescribe the RSA system with public key and private key .
Give a simple example of how the system is vulnerable to a homomorphism attack.
Describe the El-Gamal signature scheme and explain how this can defeat a homomorphism attack.
Paper 1, Section II, G
Part II, 2017 commentLet be a binary linear code. Explain what it means for to have length and . Explain what it means for a codeword of to have weight .
Suppose has length , rank , and codewords of weight . The weight enumerator polynomial of is given by
What is Prove that if and only if .
Define the dual code of .
(i) Let . Show that
(ii) Extend the definition of weight to give a weight for . Suppose that for real and all
For real, by evaluating
in two different ways, show that
Paper 2, Section II, G
Part II, 2017 commentDefine the entropy, , of a random variable . State and prove Gibbs' inequality.
Hence, or otherwise, show that and determine when equality occurs.
Show that the Discrete Memoryless Channel with channel matrix
has capacity .
Paper 4, Section I, H
Part II, 2018 commentWhat is a linear feedback shift register? Explain the Berlekamp-Massey method for recovering a feedback polynomial of a linear feedback shift register from its output. Illustrate the method in the case when we observe output
Paper 3, Section , H
Part II, 2018 commentCompute the rank and minimum distance of the cyclic code with generator polynomial and parity check polynomial . Now let be a root of in the field with 8 elements. We receive the word . Verify that , and hence decode using minimum-distance decoding.
Paper 2, Section , H
Part II, 2018 commentWhat is the channel matrix of a binary symmetric channel with error probability ?
State the maximum likelihood decoding rule and the minimum distance decoding rule. Prove that if , then they agree.
Let be the repetition code . Suppose a codeword from is sent through a binary symmetric channel with error probability . Show that, if the minimum distance decoding rule is used, then the probability of error is .
Paper 1, Section , H
Part II, 2018 commentState and prove Shannon's noiseless coding theorem. [You may use Gibbs' and Kraft's inequalities as long as they are clearly stated.]
Paper 1, Section II, H
Part II, 2018 commentDefine the bar product of binary linear codes and , where is a subcode of . Relate the rank and minimum distance of to those of and and justify your answer.
What is a parity check matrix for a linear code? If has parity check matrix and has parity check matrix , find a parity check matrix for .
Using the bar product construction, or otherwise, define the Reed-Muller code for . Compute the rank of . Show that all but two codewords in have the same weight. Given , for which is it true that all elements of have even weight? Justify your answer.
Paper 2, Section II, H
Part II, 2018 commentDescribe the RSA encryption scheme with public key and private key .
Suppose with and distinct odd primes and with and coprime. Denote the order of in by . Further suppose divides where is odd. If prove that there exists such that the greatest common divisor of and is a nontrivial factor of . Further, prove that the number of satisfying is .
Hence, or otherwise, prove that finding the private key from the public key is essentially as difficult as factoring .
Suppose a message is sent using the scheme with and , and is the received text. What is ?
An integer satisfying is called a fixed point if it is encrypted to itself. Prove that if is a fixed point then so is .